

# Memo

| Date | 02/05/18 – Version 4             |  |  |  |  |  |
|------|----------------------------------|--|--|--|--|--|
| То   | Waimakariri Water Zone Committee |  |  |  |  |  |
| сс   | -                                |  |  |  |  |  |
| From | Mark Megaughin   Hydrologist     |  |  |  |  |  |

# Environmental flow regime options for the Waimakariri River Northern Tributaries

### 1 Summary

This memorandum summarises the current status of environmental flow regime (allocation, minimum flow, partial restrictions) in the northern tributaries of the Waimakariri River, describes current issues and presents an analysis of future environmental flow regime options and their ability to address Zone Implementation Programme (ZIP) and NPS for Freshwater Management objectives. There are eleven surface water allocation zones (SWAZ) defined within the Waimakariri River Regional Plan (WRRP) (Table 1). These do not cover the entire Waimkakariri River northern tributaries area and as such a number of SWAZ which do not appear in the WRRP are also used by Environment Canterbury in the management of water (Table 2).

### Table 1 – WRRP SWAZ

| Cam River catchment               |                      |                                      |  |  |  |  |  |  |
|-----------------------------------|----------------------|--------------------------------------|--|--|--|--|--|--|
| Cam River/Ruataniwha<br>SWAZ      | Northbrook SWAZ      | orthbrook SWAZ Middlebrook SWAZ Sout |  |  |  |  |  |  |
| Cust River catchment              |                      |                                      |  |  |  |  |  |  |
| Cust River SWAZ                   | Cust Main Drain SWAZ | No.7 Drain SWAZ                      |  |  |  |  |  |  |
| Ohoka Stream catchmen             | t                    |                                      |  |  |  |  |  |  |
| Ohoka Stream SWAZ                 |                      |                                      |  |  |  |  |  |  |
| Kaiapoi River catchment           |                      |                                      |  |  |  |  |  |  |
| Kaiapoi River / Silverstream SWAZ |                      |                                      |  |  |  |  |  |  |
| Courtenay Stream catchment        |                      |                                      |  |  |  |  |  |  |
| Courtenay Stream SWAZ             | Greigs Drain SWAZ    |                                      |  |  |  |  |  |  |

### Table 2 – Non-WRRP SWAZ

Eyre River SWAZ

View Hill Creek SWAZ

Eyre River Water Race SWAZ

Waimakariri River (below woodstock) SWAZ

Waimakariri Water Race SWAZ

Bennetts Creek SWAZ

Macintosh Drain SWAZ

Saltwater Creek SWAZ

A number of issues have been identified which are common across the Waimakariri River northern tributaries area:

- SWAZ boundaries do not follow catchment boundaries in some locations
- Parts of the area are not covered by WRRP SWAZ which results in them not having an allocation, creating ambiguity for potential water users.
- The method used to assess stream depletion potential for groundwater takes is inconstant with methodology laid out in the WRRP
- Unlimited 'B' block allocations are available for all rivers. Unlimited blocks are a poor management approach and 'B' blocks are generally unsuitable for spring-fed streams

In addition, a number of SWAZ specific issues have also been identified:

- Surface water in the some SWAZ is over-allocated
- Allocation limits are generally higher than typical ecological metrics suggest would be appropriate
- Minimum flows are generally lower than typical ecological metrics suggest would be appropriate
- Minimum flows are sometimes lower than the cultural aspirations for the catchments
- Some rivers may experience a decline in the available water due to increased use of groundwater and/or climatic trends
- Ecological and cultural values are compromised in each SWAZ
- Where multiple SWAZ exist in a catchment the allocations and minimum flows are not aligned, resulting in poor outcomes for the wider catchment.

To keep the number of scenarios considered to a reasonable level each of the area-wide issues have been assessed, and then used as a basis upon which to assess the SWAZ-specific issues. This is important, because if any of the area-wide recommendations are not pursued by the Zone Committee then the impact of this will need to be reconsidered at the SWAZ level.

The outcome of this work is a list of environmental flow management options which can be pursued by the Zone Committee, and ultimately the community, to identify a recommended management regime. Broadly, these options include:

- Changing the method for assessing stream depletion rates
- Amending SWAZ boundaries as required
- Removing B blocks from spring-fed rivers
- Providing area-wide coverage of SWAZ
- Increasing minimum flows to offer greater protection of ecological and cultural values; or
- Maintaining current minimum flow levels to ensure values do not get worse
- Decrease allocation limits to offer greater protection of ecological and cultural values; or
- Maintain current allocation limits to ensure current values do not get worse
- Focus on resolving the over-allocation in a number of catchments
- · Creating equality within catchments for allocation and minimum flow
- Implement other mitigations which, along with options above can produce an overall net benefit to catchment values.

### 2 Introduction

This memorandum presents the rationale behind options for environmental flow and allocation regimes in the Waimakariri River northern tributaries area. Management is current achieved through limits set across nineteen surface water allocation zones (SWAZ). Eleven SWAZ are defined in the WRRP (Table 1), the remaining eight have been defined for the purpose of managing abstractions in areas not covered by the WRRP SWAZ (Table 2).

In this memorandum we summarises the potential changes to the WRRP designated SWAZ and identify how certainty can be created for the non-WRRP SWAZ.

Typically, rivers in this area are spring-fed streams, rising on the lower plains and flowing into the Waimakariri River before it reaches the coast. They have higher base-flows relative to hill-fed streams that typically drop steadily over the summer months in response to the seasonal reduction in groundwater levels. Flow in the spring-fed streams located closer to the Waimakariri River show a strong link to flows in the Waimakariri River; the strength of this link diminishes as distance increases from the river.

A small number of atypical streams are also present; these being the Cust and Eyre Rivers. Cust River is a hill fed, gravel-bed river which rises on foothills to the east of Mt Oxford. Eyre River rises on the higher slopes of Mt Oxford itself. Low flows dominate these rivers, particularly during summer when they often have reaches which are dry. Low flows are interspersed with larger fresh and flood flows which modify the channels, move gravel and remove macrophytes and algal growth. In their lower reaches the receive spring-flow and show characteristics similar to spring-fed streams.

Given the very different character of the spring-fed and hill-fed rivers, the issues which they face and the management options which can be adopted, are quite different.

To assess the rivers, their current management and future options we have undertaken the following work:

- 1. Current resource and trends in that resource (*Land and water solutions programme current state hydrology report Draft*)
- 2. Current consent water and how that water is used (*Land and water solutions* programme current state hydrology report Draft)
- 3. Current issues / values (COMAR, Evaluation of environmental flow regime options for the Waimakariri Northern Tributaries, Groundwater allocation modelling results for northern Waimakariri tributaries catchment)
- 4. Options available to contribute towards outcomes (*this memorandum*)

### 3 Purpose

The framework for the development of management options for all watercourses across the country is the NPS for Freshwater Management (NPSFM-14). This document requires that all councils meet five objectives:

- **Objective B1** To safeguard the life-supporting capacity, ecosystem processes and indigenous species including their associated ecosystems of fresh water, in sustainably managing the taking, using, damming, or diverting of fresh water.
- **Objective B2** To avoid any further over-allocation of fresh water and phase out existing over-allocation.

**Objective B3** To improve and maximise the efficient allocation and efficient use of water.

**Objective B4** To protect significant values of wetlands and of outstanding freshwater bodies.

**Objective B5** To enable communities to provide for their economic well-being, including productive economic opportunities, in sustainably managing fresh water quantity, within limits.

This memorandum summarises the current status of allocation and environmental flows in the Waimakariri Northern Tributaries area, describes the issues and presents the analysis of options and their ability to address the five objectives. This information will support the Zone Committee to begin the decision making process for this area.

The options for revised allocations and environmental flows result in various environmental, cultural and economic outcomes. The balance between which varies from option to option.

Maps for each catchment (SWAZ) are provided in Appendix A.

### 4 Current state of surface water

The current status of water management in the catchment is described below and is broken down into the three main elements of the management regime (allocation, minimum flow & partial restrictions). The regimes are also presented graphically in Appendix B.

### 4.1 Allocation

'A' block surface water allocation in a number of catchments is over-allocated (Table 3). 'B' block allocations are generally unused, with the exception of three consents spread across the area; only one of these consents falls within a WRRP SWAZ.

Most consents are for irrigation and stockwater with a small amount for municipal water supply and industrial use.

The over-allocation is a key issue which must be dealt with and this impacts on the options for these streams, as discussed in this document. SWAZ marked with a (\*) are non-WRRP SWAZ.

The stream depletion component of the allocation is estimated using the 30-day assessment defined within the WRRP.

|                            |                           | A permits                |                        |                           | B permits                |                        |  |  |
|----------------------------|---------------------------|--------------------------|------------------------|---------------------------|--------------------------|------------------------|--|--|
| SWAZ                       | Allocation<br>Limit (L/s) | Allocated<br>water (L/s) | Allocated<br>water (%) | Allocation<br>Limit (L/s) | Allocated<br>water (L/s) | Allocated<br>water (%) |  |  |
| Cam River                  | 700                       | 277                      | 40 %                   | Unlimited                 | -                        | -                      |  |  |
| Northbrook                 | 200                       | 193                      | 97 %                   | Unlimited                 | -                        | -                      |  |  |
| Middlebrook                | 30                        | 29                       | 97 %                   | Unlimited                 | -                        | -                      |  |  |
| Southbrook                 | 100                       | 49                       | 49 %                   | Unlimited                 | -                        | -                      |  |  |
| Cust River                 | 290                       | 400                      | 138 %                  | Unlimited                 | 100                      | n/a                    |  |  |
| Cust Main Drain            | 690                       | 822                      | 119 %                  | Unlimited                 | -                        | -                      |  |  |
| No. 7 Drain                | 130                       | 85                       | 65 %                   | Unlimited                 | -                        | -                      |  |  |
| Ohoka Stream               | 500                       | 484                      | 97 %                   | Unlimited                 | -                        | -                      |  |  |
| Kaiapoi River              | 1000                      | 534                      | 53 %                   | Unlimited                 | -                        | -                      |  |  |
| Courtenay Stream           | 140                       | 157                      | 112 %                  | Unlimited                 | -                        | -                      |  |  |
| Greigs Drain               | 70                        | 32                       | 46 %                   | Unlimited                 | -                        | -                      |  |  |
| Eyre River*                | No limit set              | 543                      | n/a                    | No limit set              | -                        | -                      |  |  |
| Coopers Creek*             | No limit set              | 60                       | n/a                    | No limit set              | -                        | -                      |  |  |
| Washpen Creek*             | No limit set              | -                        | n/a                    | No limit set              | 6.5                      | n/a                    |  |  |
| View Hill Creek*           | No limit set              | -                        | -                      | No limit set              | 100                      | n/a                    |  |  |
| Burgess Creek*             | No limit set              | 154                      | n/a                    | No limit set              | -                        | -                      |  |  |
| Old Bed Eyre<br>River*     | No limit set              | 258                      | n/a                    | No limit set              | -                        | -                      |  |  |
| Waimakariri Water<br>Race* | No limit set              | 76                       | n/a                    | No limit set              | -                        | -                      |  |  |
| Bennetts Creek*            | No limit set              | 27                       | n/a                    | No limit set              | -                        | -                      |  |  |
| Total                      | 3850                      | 4180                     | -                      | Unlimited                 | 206.5                    | -                      |  |  |

#### Table 3 – Current allocation summary

### 4.2 Minimum flows

Minimum flows have been set in the WWRP (Table 4). For each SWAZ this is the river flow rate below which all takes must cease.

Consents in this area underwent a consent review. The majority of consents therefore comply with the rules in the WRRP; this is not the case in other areas. The high rate of compliance with WRRP rules mean that the WRRP minimum flows (Table 4) are effectively fully implemented and these can be considered the baseline from which to assess options for future management.

| Minimum flow (L/s)SWAZA permitsB permitsCam River1,0001,700Northbrook530730Middlebrook6090Southbrook140240Cust River20310Cust Main Drain230920No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in<br>WRRP for these SWAZ. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A permitsB permitsCam River1,0001,700Northbrook530730Middlebrook6090Southbrook140240Cust River20310Cust Main Drain230920No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                               |
| Northbrook530730Middlebrook6090Southbrook140240Cust River20310Cust River200310Cust Main Drain230920No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                    |
| Middlebrook6090Southbrook140240Cust River20310Cust Main Drain230920No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                    |
| Southbrook140240Cust River20310Cust Main Drain230920No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                                   |
| Cust River20310Cust Main Drain230920No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                                                   |
| Cust Main Drain230920No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                                                                  |
| No. 7 Drain60190Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                                                                                       |
| Ohoka Stream300800Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                                                                                                       |
| Kaiapoi River6001,600Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                                                                                                                         |
| Courtenay Stream260400Greigs Drain150220Eyre River*1. No minimum flow set in                                                                                                                                                                                                                              |
| Greigs Drain     150     220       Eyre River*     1. No minimum flow set in                                                                                                                                                                                                                              |
| <i>Eyre River*</i> 1. No minimum flow set in                                                                                                                                                                                                                                                              |
| 1. No minimum flow set in                                                                                                                                                                                                                                                                                 |
| Coopore Crook*                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                           |
| Washpen Creek*2. Where an active consent                                                                                                                                                                                                                                                                  |
| View Hill Creek* exists minimum flows may be included in the                                                                                                                                                                                                                                              |
| Burgess Creek* consent.                                                                                                                                                                                                                                                                                   |
| Old Bed Eyre<br>River*3. Where no active consent<br>exists there is no                                                                                                                                                                                                                                    |
| Waimakariri Water<br>Race* guidance in the WRRP as<br>to the appropriate<br>minimum flow                                                                                                                                                                                                                  |
| Bennetts Creek*                                                                                                                                                                                                                                                                                           |

### Table 4 – Current minimum flows

### 4.3 Partial restrictions

Partial restrictions apply above the minimum flow and begin to reduce takes once a trigger flow has been reached in the river. The trigger flow is the sum of the minimum flow and allocated water up to the allocation limit. The WRRP (*Rule 5.1 (d) (2)*) requires pro-rata partial restrictions to be applied to all consented takes. Because of the consent review process the majority of consents include the partial restriction clause. Given that both the WRRP and WRRP require partial restrictions it can be expected that the pending sub-regional planning process will preserve these restrictions. We have not assessed the effects of an amended partial restriction regime.

#### 4.4 Water use

Current water use was assessed for the water year 2014-15. The data for water used is taken from water meter returns. Where returns were not available water use was estimated using data from similar takes and rainfall/evaporation data.

The 2014-15 year was exceptionally dry and therefore represents a year of high water use. Water use was assessed on a percentage of available water basis. This looks at the restrictions in the peak water use month (January) and estimates the available water based on consent restrictions. The available water is then compared to the water used in that month. This analysis could not be undertaken for all SWAZ.

| Cam River               | 100%          |
|-------------------------|---------------|
| Northbrook              | 100%          |
| Middlebrook             | Not available |
| Southbrook              | 100%          |
| Cust River              | 100 %         |
| Cust Main Drain         | 79 %          |
| No. 7 Drain             | Not available |
| Ohoka Stream            | 57 %          |
| Kaiapoi River           | 70 %          |
| Courtenay Stream        | Not available |
| Greigs Drain            | Not available |
| Eyre River*             | Not available |
| Coopers Creek*          | Not available |
| Washpen Creek*          | Not available |
| View Hill Creek*        | Not available |
| Burgess Creek*          | Not available |
| Old Bed Eyre River*     | Not available |
| Waimakariri Water Race* | Not available |
| Bennetts Creek*         | Not available |
|                         |               |

Table 5 – Peak month water use as % of restricted volume

### 5 Area-wide scenarios

There are a number of issues which apply across the whole northern Waimakariri River tributaries area. These are presented below, and form the basis of the SWAZ specific analysis presented in Sections 6 and 7.

### 5.1 SWAZ boundary changes and infilling

SWAZ boundaries should generally follow surface catchment boundaries and delineate surface water resources into discrete units. The current boundaries were reviewed and changes were identified to align the boundaries as above. The boundary changes identified result in changes to the allocation totals for SWAZ as some consents are allocated into different SWAZ (Table 6). Revised SWAZ boundaries are provided in Appendix 1.

In addition to amending boundaries we have also defined SWAZ to provide full coverage of the area. The environmental flow regime for these SWAZ are described in Section 7.

| Table 6 – | SWAZ | boundary | assessment |
|-----------|------|----------|------------|
|-----------|------|----------|------------|

| Existing SWAZ                                                             |                    |                 | t SWAZ<br>ries (L/s) | Revised<br>boundar |                 | Diff (L/s)        |
|---------------------------------------------------------------------------|--------------------|-----------------|----------------------|--------------------|-----------------|-------------------|
| name                                                                      | Revised SWAZ name  | SW 'A'<br>(L/s) | SW 'B'<br>(L/s)      | SW 'A'<br>(L/s)    | SW 'B'<br>(L/s) | SW TOTAL<br>(L/s) |
| Cam River                                                                 | Cam River          | 169             | -                    | 83                 | -               | -86               |
| North Brook                                                               | North Brook        | 94              | -                    | 139                | -               | 45                |
| Middle Brook                                                              | Middle Brook       | 29              | -                    | 29                 | -               | 0                 |
| South Brook                                                               | South Brook        | -               | -                    | 60                 | -               | 60                |
| Cust River /<br>Bennetts Creek                                            | Cust River         | 265             | 100                  | 265                | 100             | 0                 |
| Cust Main Drain                                                           | Cust Main Drain    | 544             | -                    | 544                | -               | 0                 |
| No. 7 Drain                                                               | No. 7 Drain        | 55              | -                    | 36                 | -               | -19               |
| Ohoka Stream                                                              | Ohoka Stream       | 20              | -                    | 20                 | -               | 0                 |
| Kaiapoi River                                                             | Silverstream       | 92              | -                    | 92                 | -               | 0                 |
| Courtenay<br>Stream                                                       | Courtenay Stream   | 37              | -                    | 23                 | -               | -14               |
| Greigs Drain                                                              | Greigs Drain       | 32              | -                    | 46                 | -               | 14                |
| Burgess Creek                                                             | Upper Ohoka Stream | -               | -                    | -                  | -               | -                 |
| Old Bed Eyre<br>River /<br>Waimakariri<br>Water Race /<br>View Hill Creek | Eyre River         |                 | 100                  | -                  | 100             | 0                 |
| Coopers Creek /<br>Washpen Creek                                          | Upper Eyre River   | 60              | 7                    | 67                 | -               | 0                 |
| Macintosh Drain<br>/ Kairaki Creek                                        | Coastal Streams    | -               | -                    | -                  | -               | -                 |
| -                                                                         | Total              | 16              | 04                   | 16                 | 04              | 0                 |

# 5.2 Stream depletion methodology

We undertook an assessment of the effects of changing from the WRRP methodology for quantifying stream depletion to the WRRP methodology. For both methods we undertook a Theis-based assessment of stream depletion rate (Table 6). It should be noted that this affects only the stream depletion component of the allocation. It does not affect the direct surface water component of allocation.

|                                | SD30<br>(L/s) | SD150<br>(L/s) | Diff<br>(L/s) |
|--------------------------------|---------------|----------------|---------------|
| Cam River                      | 108           | 72             | 37            |
| North Brook                    | 99            | 130            | -31           |
| Middle Brook                   | -             | -              | 0             |
| South Brook                    | 49            | 21             | 28            |
| Cust River                     | 135           | 162            | 31            |
| Cust Main Drain                | 278           | 332            | -54           |
| No. 7 Drain                    | 29            | 33             | -3            |
| Ohoka Stream                   | 464           | 438            | 27            |
| Silverstream/ Kaiapoi<br>River | 449           | 357            | 92            |
| Courtenay Stream               | 120           | 111            | 10            |
| Greigs Drain                   | -             | -              | 0             |
| Upper Ohoka Stream             | 123           | 120            | 2             |
| Eyre River                     | 877           | 1037           | -160          |
| Upper Eyre River               | -             | -              | 0             |
| Coastal Streams                | 32            | 31             | 1             |
| Total                          | 2822          | 2842           | -20           |
|                                |               |                |               |

### Table 6 - Stream depletion methodology assessment

### 5.3 Suitability of 'B' blocks

'B' permits to take water are traditionally issued once all 'A' permits have been taken up. They allow water to be taken during high flows and generally these takes have poor reliability and often require storage to make use of the water. Each stream in the Waimakariri Northern Tributaries area has a 'B' block. This 'B' block has an unlimited size which is not an acceptable situation to be carried into the sub-regional process.

'B' permits generally relate to high flows. Most of the waterways in the area are spring-fed and hence high flows are rare and of limited magnitude.

As such the availability of 'B' permits on these rivers presents a risk of minimising the flow variability of these rivers and also presents a very poor reliability of supply to those who take up the 'B' permits.

We have assessed the availability of 'B' blocks in the area. We have used the long term flow records available (Cam River/Ruataniwha and Cust Main Drain). These are the longest available continuous records but also represent two different types of catchments, the Cam River/Ruataniwha being spring-fed and the Cust Main Drain being hill-fed.

Given that the 'B' block is unlimited a number of example allocation limits were selected to test the reliability of the 'B' blocks.

Our analysis of the Cam River/Ruataniwha 'B' block supports the pattern of poor reliability (Table 8) expected for a spring-fed stream. Regardless of block size the days of full day restriction significantly limit the usefulness of the block.

| B Block test 1<br>1,700 L/s min flow            | Full restriction    | 203 days |  |
|-------------------------------------------------|---------------------|----------|--|
| 200 L/s allocation                              | Partial restriction | 5 days   |  |
| limit                                           | No restriction      | 4 days   |  |
| B Block test 2                                  | Full restriction    | 203 days |  |
| 1,700 L/s min flow<br><b>300 L/s</b> allocation | Partial restriction | 8 days   |  |
| limit                                           | No restriction      | 2 days   |  |
| B Block test 3<br>1,700 L/s min flow            | Full restriction    | 203 days |  |
| 400 L/s allocation                              | Partial restriction | 8 days   |  |
| limit                                           | No restriction      | 1 day    |  |
| B Block test 4<br>1,700 L/s min flow            | Full restriction    | 203 days |  |
| 500 L/s allocation                              | Partial restriction | 8 days   |  |
| limit                                           | No restriction      | 1 day    |  |
|                                                 |                     |          |  |

### Table 8 - Cam River/Ruataniwha 'B' block analysis

In lieu of long term data for the other spring-fed streams we have deemed the results for the Cam River/Ruataniwha to be representative of the situation on all spring-fed streams within the area. This assumption suggests that none of the spring-fed streams present viable 'B' blocks. The fact that no 'B' permits have been granted on these streams would suggest this is a reasonable assumption.

We undertook the same analysis for Cust Main Drain, which takes flow from the hill-fed Cust River. This analysis (Table 9) suggests that the 'B' block on Cust Main Drain is more viable than that of the Cam River/Ruataniwha and that it is feasible that water users could make economic use of the water.

Table 9 – Cust Main Drain 'B' block analysis

| B Block test 1<br>920 L/s min flow | Full restriction    | 112 days |
|------------------------------------|---------------------|----------|
| 200 L/s allocation                 | Partial restriction | 25 days  |
|                                    | No restriction      | 74 days  |
| B Block test 2<br>920 L/s min flow | Full restriction    | 112 days |
| 300 L/s allocation                 | Partial restriction | 34 days  |
|                                    | No restriction      | 65 days  |
| B Block test 3<br>920 L/s min flow | Full restriction    | 112 days |
| 400 L/s allocation                 | Partial restriction | 41 days  |
| iiiii                              | No restriction      | 58 days  |
| B Block test 4<br>920 L/s min flow | Full restriction    | 112 days |
| 500 L/s allocation                 | Partial restriction | 49 days  |
|                                    | No restriction      | 50 days  |
|                                    |                     |          |

This analysis suggests that the 'B' block on Cust Main Drain is potentially viable. By extension, this would suggest that Cust River also has a potentially viable 'B' block given it is the source of high flows for Cust Main Drain. The upper Eyre River catchment has the same character as the Cust River and as such a 'B' block would also likely be viable.

There is a question around whether this water should be used if it creates addition nutrient loading issues, however this issue is not covered here and must be addressed in a wider-consideration.

### 5.4 Cumulative effects

The above options have been aggregated (Table 10) to form a basis for the analysis of environmental flow regime options for each SWAZ as presented in Section 6 and 7.

Three allocation summaries are presented in Table 10. These are:

- Resource Consent Inventory 1 (RCI 1) allocation calculated as per the WRRP allocation policy
- Resource Consent Inventory 2 (RCI 2) allocation calculated as per the WRRP allocation policy but utilising the revised SWAZ boundaries
- Resource Consent Inventory 3 (RCI 3) allocation calculated as per the LWRP allocation policy and revised SWAZ boundaries

RCI 3 represents the what is used as a baseline for consideration of future options. The other RCI are provided here to demonstrate how these numbers were derived and through which changes differences were generated.



# Table 10 – Area wide summary

|                               |                                                         | Stream depletir                                          | ng GW takes (L/s)                                            |                                      |                                         | Surface                             | water     | takes (L/s)                                              |            |                  |      | Total A b                                 | lock alloca                                    | tion (L/s)                                      |           | A                            | vailable w | ater (A blo                   | ck)       |                              |
|-------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|-----------|----------------------------------------------------------|------------|------------------|------|-------------------------------------------|------------------------------------------------|-------------------------------------------------|-----------|------------------------------|------------|-------------------------------|-----------|------------------------------|
| Revised SWAZ list             | RCI 1:<br>30 day SD<br>rates, Old<br>SWAZ<br>boundaries | RCI 2:<br>30 day SD rates,<br>Revised SWAZ<br>boundaries | RCI 3:<br>150 day SD<br>rates, Revised<br>SWAZ<br>boundaries | Difference in rates<br>(RCI 2 vs. 3) | RCI 1:<br>Old SWAZ<br>boundaries<br>A B | RCI 2 a<br>Revi<br>SW<br>bound<br>A | sed<br>AZ | Difference between<br>SWAZ boundaries (RCI<br>1 vs. 2/3) | Allocation | Limit (L/s)<br>B | Plan | RCI1:<br>Old<br>SWAZ +<br>30 day<br>rates | RCI 2:<br>Revised<br>SWAZ +<br>30 day<br>rates | RCI 3:<br>Revised<br>SWAZ +<br>150 day<br>rates | Old SW    | Cl 1:<br>AZ + 30 day<br>ates | Revised    | CI 2:<br>SWAZ + 30<br>v rates | Revised S | CI 3:<br>SWAZ + 150<br>rates |
| Silverstream                  | 449                                                     | 449                                                      |                                                              | , -92                                |                                         | 92                                  |           | 0                                                        | 1000       |                  | WRRP | 541                                       |                                                |                                                 | 459       | 46%                          | 459        | 46%                           | 551       | 55%                          |
| Kaiapoi River                 |                                                         |                                                          |                                                              |                                      |                                         | _                                   |           |                                                          |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Courtenay Stream              | 120                                                     | 120                                                      | 111                                                          | -10                                  | 37                                      | 23                                  |           | -14                                                      | 140        |                  | WRRP | 157                                       | / 143                                          | 134                                             | 4 -17     | -12%                         | -3         | -2%                           | 6         | 5%                           |
| Greigs Drain                  |                                                         |                                                          |                                                              |                                      | 32                                      | 46                                  |           | 14                                                       | 70         |                  | WRRP | 32                                        |                                                |                                                 | -         | 54%                          | 24         | 34%                           | 24        | 34%                          |
| Cam River                     | 108                                                     | 108                                                      | 72                                                           | -37                                  |                                         | 83                                  |           | -86                                                      | 700        |                  | WRRP | 277                                       |                                                |                                                 | -         | 60%                          | 509        | 73%                           | 546       | 78%                          |
| North Brook                   | 99                                                      |                                                          |                                                              |                                      | 94                                      | 139                                 |           | 45                                                       | 200        |                  | WRRP | 193                                       |                                                |                                                 | 7         | 4%                           | -38        | -19%                          | -69       | -34%                         |
| Middle Brook                  |                                                         |                                                          |                                                              |                                      | 29                                      | 29                                  |           | 0                                                        | 30         |                  | WRRP | 29                                        |                                                |                                                 | 9 1       | 3%                           | 1          | 3%                            | 1         | 3%                           |
| South Brook                   | 49                                                      | 49                                                       | 21                                                           | -28                                  |                                         | 60                                  |           | 60                                                       | 100        |                  | WRRP | 49                                        |                                                |                                                 |           | 51%                          | -9         | -9%                           | 19        | 19%                          |
| Cust River                    | 135                                                     | 162                                                      | 144                                                          | -19                                  | 265 100                                 |                                     |           | 0                                                        | 290        |                  | WRRP | 427                                       |                                                |                                                 | -         | -47%                         | -137       | -47%                          | -119      | -41%                         |
| No. 7 Drain                   | 29                                                      |                                                          |                                                              |                                      | 55                                      | 36                                  |           | -19                                                      | 130        |                  | WRRP | 85                                        |                                                |                                                 | 9 45      | 35%                          | 64         | 49%                           | 61        | 47%                          |
| Cust Main Drain               | 278                                                     |                                                          |                                                              | 54                                   | 544                                     | 544                                 |           | 0                                                        | 690        |                  | WRRP | 822                                       | 822                                            | 876                                             | 5 -132    | -19%                         | -132       | -19%                          | -186      | -27%                         |
| Ohoka Stream                  | 464                                                     |                                                          |                                                              |                                      | 20                                      | 20                                  |           | 0                                                        | 500        |                  | WRRP | 484                                       |                                                |                                                 |           | 3%                           | 16         | 3%                            | 42        | 8%                           |
| Upper Ohoka Stream            |                                                         | 154                                                      | 139                                                          |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Eyre River                    | 543                                                     |                                                          | 1037                                                         |                                      |                                         |                                     | 100       | -100                                                     |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Upper Eyre River              |                                                         |                                                          |                                                              |                                      |                                         | 67                                  |           | -67                                                      |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Coastal Streams               |                                                         | 32                                                       | 31                                                           | -1                                   |                                         |                                     |           |                                                          |            |                  |      |                                           | 1                                              |                                                 |           |                              |            |                               |           |                              |
| Saltwater Creek (Waimakariri) | 32                                                      |                                                          |                                                              |                                      |                                         | 1                                   |           |                                                          |            |                  |      |                                           | 1                                              |                                                 |           |                              |            |                               |           |                              |
| Bennetts Creek                | 27                                                      |                                                          |                                                              |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                |                                                 | 1         |                              |            |                               |           |                              |
| Burgess Creek                 | 154                                                     |                                                          |                                                              |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Waimakariri Water Race        | 76                                                      |                                                          |                                                              |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Old Bed Eyre River            | 258                                                     |                                                          |                                                              |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Coopers Creek                 |                                                         |                                                          |                                                              |                                      | 60                                      |                                     |           | 60                                                       |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Washpen Creek                 |                                                         |                                                          |                                                              |                                      | 7                                       |                                     |           | 7                                                        |            |                  |      |                                           |                                                |                                                 | 1         |                              |            |                               |           |                              |
| View Hill Creek               |                                                         |                                                          |                                                              |                                      | 100                                     |                                     |           | 100                                                      |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
| Total                         | 2822                                                    | 2822                                                     | 2842                                                         | 20                                   | 1604                                    | 16                                  | 04        | -167                                                     |            | 3850             |      | 3097                                      | 3097                                           | 2973                                            | 3         |                              |            |                               |           |                              |
|                               |                                                         |                                                          |                                                              |                                      |                                         |                                     |           |                                                          | Î          |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |
|                               |                                                         |                                                          |                                                              |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                | = less tha                                      | an 10% wa | iter availabl                | e allocate | d                             |           |                              |
|                               |                                                         |                                                          |                                                              |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                | = over al                                       | located   |                              |            |                               |           |                              |
|                               |                                                         | <u>.</u>                                                 |                                                              |                                      |                                         |                                     |           |                                                          |            |                  |      |                                           |                                                |                                                 |           |                              |            |                               |           |                              |



#### 6 SWAZ specific scenarios

#### 6.1 Introduction

Modelling scenarios are summarised below. For the Cust Main Drain and Cam River/Ruataniwha, modelling of the effects of restrictions was undertaken using flow data from long-term flow recorders. Modelling for the spring-fed streams was undertaken using data synthesised from the limited number of gauging and long records from other sites. We tested a number of scenarios (Table 11) to provide information on the viable options for future management of the surface water resource.

These scenarios are split between two categories. Scenarios 1-6 examine the effects of specific management decisions such as adopting various minimum flows, allocation limits and partial restrictions. Scenario 7 examines the effects of future changes to the available water resource on the management decisions. Climate change is not expected to materially change water resource availability in these catchments in the near term, however a number of factors relating to groundwater may impact on water availability.

The changes to water resource availability in Category 2 scenarios were taken from 'Groundwater allocation modelling results for northern Waimakariri tributaries catchment'. The groundwater modelling work indicates a range of flow reductions in the spring-fed streams (Table 12). A threshold of 10 % has been used to determine whether the result is significant enough to undertake further assessment. In all cases we have applied the modelled change in median flow to all flows; this assumed that changes are uniform across the lower half of the flow duration curve. We have no further details to upon which to base a transient analysis.

| Scenario 1 | Represents the current consented regime                                        |
|------------|--------------------------------------------------------------------------------|
| Scenario 2 | Represents the WRRP regime, fully allocated                                    |
| Scenario 3 | Represents the WRRP regime, capped at current allocated water                  |
| Scenario 4 | Represents the ecological regime (allocation and minimum flow recommendations) |
| Scenario 5 | Represents ecological minimum flow recommendation, with WRRP allocation limit  |
| Scenario 6 | Represents cultural minimum flow recommendation, with WRRP allocation limit    |
| Scenario 7 | As per scenario 2 but with reduced flows from PC5 efficiency gains             |
|            |                                                                                |

### Table 11 - Model scenario definition

#### Table 12 - Changes to water resource availability

| Scenario<br>name | Stream                        | Median flow<br>decline |
|------------------|-------------------------------|------------------------|
| full_abs_allo    | Cust River<br>Cust Main Drain | 36 %<br>14 %           |

### 6.2 Common elements

### 6.2.1 Partial restrictions

For all scenario's we have used a pro-rata restriction regime. This approach ensures that the minimum flow is not breached and ensures that water remains available for use. Under this regime pro-rata restrictions commence at a river flow equal to the minimum flow plus the allocation limit. Below the trigger flow restrictions increase linearly until the minimum flow is reached and all takes must cease (Figure 1).

Due to the consent review already undertaken for the WRRP the majority of consents already have pro-rata restrictions included in their conditions. Unlike other areas this means that there is not a large step between current consent conditions and implementation of the WRRP rules.



#### Figure 1 – Pro-rata restriction example

# 6.3 Scenario table

Table 13 details the main parameters used in modelling the surface water scenarios. The parameters used to consider SWAZ created to infill current gaps are discussed in Section 7.

### Table 13 – Model scenario details

|          |       | Sc      | enario 1 | - Currer | nt conditio | ns   | Scen    | ario 2 - V | RRP (In | nplementa | ation) | Scenario 3 - WRRP (Cap at current use) |         |      |          |      |
|----------|-------|---------|----------|----------|-------------|------|---------|------------|---------|-----------|--------|----------------------------------------|---------|------|----------|------|
| River    | Site  | Flow    | Trigger  | MF       | Partial     | Allo | Flow    | Trigger    | MF      | Partial   | Allo   | Flow                                   | Trigger | MF   | Partial  | Allo |
| Cam      | 66409 | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 1700       | 1000    | Pro-rata  | 700    | Current                                | 1277    | 1000 | Pro-rata | 155  |
| North    | 279   | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 730        | 530     | Pro-rata  | 200    | Current                                | 723     | 530  | Pro-rata | 269  |
| Middle   | 1115  | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 90         | 60      | Pro-rata  | 30     | Current                                | 89      | 60   | Pro-rata | 29   |
| South    | 339   | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 240        | 140     | Pro-rata  | 100    | Current                                | 189     | 140  | Pro-rata | 81   |
|          |       |         |          |          |             |      |         |            |         |           |        |                                        |         |      |          |      |
| Cust     | 270   | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 310        | 20      | Pro-rata  | 290    | Current                                | 620     | 20   | Pro-rata | 427  |
| CustM    | 66417 | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 920        | 230     | Pro-rata  | 690    | Current                                | 1052    | 230  | Pro-rata | 876  |
| No.7     | 343   | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 190        | 60      | Pro-rata  | 130    | Current                                | 145     | 60   | Pro-rata | 69   |
|          |       |         |          |          |             |      |         |            |         |           |        |                                        |         |      |          |      |
| Ohoka    | 370   | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 800        | 300     | Pro-rata  | 500    | Current                                | 738     | 300  | Pro-rata | 458  |
| Silvers  | 361   | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 1600       | 600     | Pro-rata  | 1000   | Current                                | 1134    | 600  | Pro-rata | 479  |
|          |       |         |          |          |             |      |         |            |         |           |        |                                        |         |      |          |      |
| Griegs D | 371   | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 220        | 150     | Pro-rata  | 70     | Current                                | 182     | 150  | Pro-rata | 46   |
| Courten  | 66432 | Current | LFDB     | LFDB     | Pro-rata    | LFDB | Current | 400        | 260     | Pro-rata  | 140    | Current                                | 442     | 260  | Pro-rata | 134  |

|          |       | S       | cenario | 4 - Ecolo | ogical (Ful | )     | Scen    | ario 5 - E | cologic | al (WRRP | Allo) | Scenario 6 - Cultural (WRRP Allo) |         |      |          |      |
|----------|-------|---------|---------|-----------|-------------|-------|---------|------------|---------|----------|-------|-----------------------------------|---------|------|----------|------|
| River    | Site  | Flow    | Trigger | MF        | Partial     | Allo  | Flow    | Trigger    | MF      | Partial  | Allo  | Flow                              | Trigger | MF   | Partial  | Allo |
| Cam      | 66409 | Current | 1200.5  | 890       | Pro-rata    | 310.5 | Current | 1590       | 890     | Pro-rata | 700   | Current                           | 1900    | 1200 | Pro-rata | 700  |
| North    | 279   | Current | 713.3   | 530       | Pro-rata    | 183.3 | Current | 730        | 530     | Pro-rata | 200   | Current                           | 790     | 590  | Pro-rata | 200  |
| Middle   | 1115  | Current | 32.5    | 25        | Pro-rata    | 7.5   | Current | 55         | 25      | Pro-rata | 30    | Current                           | 80      | 50   | Pro-rata | 30   |
| South    | 339   | Current | 186.5   | 140       | Pro-rata    | 46.5  | Current | 240        | 140     | Pro-rata | 100   | Current                           | 270     | 170  | Pro-rata | 100  |
|          |       |         |         |           |             |       |         |            |         |          |       |                                   |         |      |          |      |
| Cust     | 270   | Current | 203.7   | 150       | Pro-rata    | 53.7  | Current | 440        | 150     | Pro-rata | 290   | Current                           | na      | na   | na       | na   |
| CustM    | 66417 | Current | 320     | 230       | Pro-rata    | 90    | Current | 920        | 230     | Pro-rata | 690   | Current                           | 1090    | 400  | Pro-rata | 690  |
| No.7     | 343   | Current | 174.4   | 130       | Pro-rata    | 44.4  | Current | 260        | 130     | Pro-rata | 130   | Current                           | 190     | 60   | Pro-rata | 130  |
|          |       |         |         |           |             | _     |         |            |         |          |       |                                   |         |      |          |      |
| Ohoka    | 370   | Current | 668.6   | 470       | Pro-rata    | 198.6 | Current | 970        | 470     | Pro-rata | 500   | Current                           | 920     | 420  | Pro-rata | 500  |
| Silvers  | 361   | Current | 1628.5  | 1150      | Pro-rata    | 478.5 | Current | 2150       | 1150    | Pro-rata | 1000  | Current                           | 2200    | 1200 | Pro-rata | 1000 |
|          |       |         |         |           |             | 1     |         |            |         |          |       |                                   |         |      |          |      |
| Griegs D | 371   | Current | 313.4   | 230       | Pro-rata    | 83.4  | Current | 300        | 230     | Pro-rata | 70    | Current                           | 300     | 230  | Pro-rata | 70   |
| Courter  | 66432 | Current | 438     | 330       | Pro-rata    | 108   | Current | 470        | 330     | Pro-rata | 140   | Current                           | 540     | 400  | Pro-rata | 140  |

|          |       | Scenar  | 'io 7 - WF | RRP (PC | 5_80 Flow | rates) |
|----------|-------|---------|------------|---------|-----------|--------|
| River    | Site  | Flow    | Trigger    | MF      | Partial   | Allo   |
| Cam      | 66409 | Current | 1700       | 1000    | Pro-rata  | 700    |
| North    | 279   | Current | 730        | 530     | Pro-rata  | 200    |
| Middle   | 1115  | Current | 90         | 60      | Pro-rata  | 30     |
| South    | 339   | Current | 240        | 140     | Pro-rata  | 100    |
|          |       |         |            |         |           |        |
| Cust     | 270   | x0.64   | 310        | 20      | Pro-rata  | 290    |
| CustM    | 66417 | x 0.86  | 920        | 230     | Pro-rata  | 690    |
| No.7     | 343   | Current | 190        | 60      | Pro-rata  | 130    |
|          |       |         |            |         |           |        |
| Ohoka    | 370   | Current | 800        | 300     | Pro-rata  | 500    |
| Silvers  | 361   | Current | 1600       | 600     | Pro-rata  | 1000   |
|          |       |         |            |         |           |        |
| Griegs D | 371   | Current | 220        | 150     | Pro-rata  | 70     |
| Courten  | 66432 | Current | 400        | 260     | Pro-rata  | 140    |
|          |       |         |            |         |           |        |

Scenario 1 LFDB Band used Cam Band 3 North Band 1 Middle Band 1 South Band A CRC180124

CustBand 2CustMBand 20No.7Band 1

OhokaBand 12SilversBand 2

Griegs I Band 2 Courten Band 1

### 7 Model results

#### 7.1 Introduction

The modelling results are presented below. There are two outputs to be interpreted (1) the effects on supply reliability, and (2) the effect on flow within the river.

For these, the key inputs are minimum flow, allocation block size and the resulting partial restriction trigger level.

- Minimum flow This is the river flow below which takes must cease (i.e full restrictions). A low minimum flow will result in a smaller number of days on full restriction, but will have poorer outcomes for the stream ecological and cultural values. A higher minimum flow will result in a greater number of days on full restriction but will have better outcomes for other values.
- 2. Allocation block limit This is the total amount of water allowed to be taken from the surface water. A large allocation block means that flow variability will be lost from a wide range of flows, a small block means that variability will be lost from only a small range of flows, better protecting the natural function of the water way. A smaller block size generally protects users reliability whereas a large block size (on the same river) generally reduces users reliability.
- 3. Partial restriction trigger This is the river flow below which takes start to be restricted. It is the sum of the minimum flow + allocation block limit. If either, or both, are large this results in a high partial restriction trigger. The effect of this is most of the flow occurring being under the trigger level and hence an increase to the number of days users are on partial restrictions. A lower trigger level results in less days on partial restriction. These restrictions are detrimental for users as they cannot take their full consented amount. Whilst partial restrictions are beneficial to ecological values, a high trigger risks flows flat-lining at the minimum flow. If this occurs over extended periods then the values of the river will suffer; this is more a function of the allocation block size rather than the partial restrictions.

It is important to note that the current consented situation is almost identical to the regime required in the WRRP. This is because of the consent review undertaken. The rules in the WPRP are not open for re-litigation under this current process; they can however be used to as the basis for a 'stay at current' scenario.

Only scenarios 2,3,4,6 and 7 are discussed here. All of the restriction and economic information presented in Section 7 has been taken from Harris (2018).

### 7.2 Cam River/Ruataniwha SWAZ

### 7.2.1 Reliability of supply & river flow

There is a strong alignment between current consents and the plan rules and limits. This means that the current consenting scenario generally reflects the WRRP scenario.

Under the *WRRP* – *full implementation* scenario there are 24 days full restrictions per year on average with much of the rest of the season on partial restrictions. This has the effect of holding the river at or around the minimum flow for much of the irrigation season if consent holders take their full entitlement.

The ecological recommendations do not alter the number of days partial restriction, however the days on full restriction decrease significantly due to the lower minimum flow. The ecological minimum flow for this site is lower than the WRRP minimum flow. This is because the WRRP minimum flow was set to provide dilution to wastewater discharges, rather than for ecological purposes.

The cultural recommendation for minimum flow increases days of full restriction significantly, but would also increase the amount of water kept in the river.

|                                                     |                 | Average<br>strictio |       | Regional economic outcomes      |                             |                                             |                                 |  |
|-----------------------------------------------------|-----------------|---------------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|
| Scenario name                                       | Partial<br>days | Full<br>days        | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |
| WRRP – Full implementation                          | 156             | 24                  | 50 %  | \$0.45                          | \$6.15                      | \$3.06                                      | 50                              |  |
| WRRP – Cap at current allocation                    | 46              | 24                  | 19 %  | \$0.28                          | \$1.85                      | \$0.92                                      | 15                              |  |
| Ecological recommendations                          | 83              | 1                   | 16 %  | \$0.60                          | \$3.81                      | \$1.90                                      | 31                              |  |
| Cultural recommendations with WRRP allocation limit | 109             | 84                  | 67 %  | \$0.01                          | \$4.97                      | \$2.47                                      | 40                              |  |

### Table 13 – Cam River/Ruataniwha reliability summary

Peak water use (January) was estimated as 100 % of the available water, this is likely to tail off in the months either side of the peak. This means that some flow variability in the non-peak months may exist when users are not taking their full allocation, however this cannot be reliable upon as it is at the discretion of the consent holder.

### 7.2.2 Catchment-wide approach

A catchment-wide approach should be considered for the Cam River SWAZ because the three Brooks SWAZ are also part of the overall Cam River/Ruataniwha catchment. Taking a catchment-wide approach assesses the effect management rules in the three Brooks have on the Cam River itself.

An analysis of flow records (in particular recession curves) on the Cam River/Ruataniwha and the three brooks shows that the Cam River/Ruataniwha reaches its minimum flow around

30 days before North and South Brook. Given Middle Brook's small size it has not been considered further. The effect of this inequity across minimum flows is that when the Cam River/Ruataniwha is intended to be protected from the effects of abstraction, consents on the North and South Brook continue to degrade the flow within the main stem of the Cam River/Ruataniwha.

This could be resolved by keeping the Cam River minimum flow at the WRRP level, and adjusting the North and South Brook minimum flows to align with the cultural recommendations. This is raised in the relevant sections on North Brook and South Brook.

The total allocation for the Cam River/Ruataniwha main stem is the sum of allocation on the Cam River SWAZ and the three Brooks SWAZ. This gives an allocation limit of 1030 L/s for the whole catchment. The allocation limit for Cam River/Ruataniwha main stem is 700 L/s. When assessing options for allocation in these SWAZ the cumulative effects on the Cam River/Ruataniwha should be noted. Across the four SWAZ which make up the Cam River/Ruataniwha catchment 534 L/s is currently allocated.

To manage the cumulative effects on Cam River/Ruataniwha it would be prudent to aim for ensuring that the total allocation for the catchment does not exceed the current allocation of the Cam mainstem, that being 700 L/s. Consideration should also be given to a catchment-wide allocation which equals the ecological allocation recommendations, however, whilst providing a high level of ecological protection there are potentially significant negative effects on economics which should also be considered.

### 7.2.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that the Cam River/Ruataniwha is insensitive to changes in groundwater recharge caused by PC5 implementation. This aligns with our conceptual understanding of the river which suggests that much of the base flow in the river is sourced from groundwater which is fed by the Ashley River/Rakahuri.

### 7.3 North Brook SWAZ

### 7.3.1 Reliability of supply & river flow

There is a strong alignment between current consents and the plan rules and limits. This means that the current consenting scenario generally reflects the WRRP scenario.

Under the WRRP - full implementation scenario there are 7 days full restrictions per year on average with much of the rest of the season on partial restrictions. This has the effect of holding the river at or around the minimum flow for much of the irrigation season if consent holders take their full entitlement. Because allocation is higher than the current plan limit the days of partial restriction under the *Cap at current scenario* are greater that the *WRRP – full implementation scenario*.

The *Ecological scenario* reduces the number of days partial restriction, however they remain significant.

The Cultural scenario follows the same pattern as the others, with high partial restrictions and some days of full restriction. It has the highest number of days full restriction.

|                                                      |                 | -                 | -     |                                 |                             |                                             |                                 |  |
|------------------------------------------------------|-----------------|-------------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|
|                                                      |                 | verag<br>strictio |       | Regional economic outcomes      |                             |                                             |                                 |  |
| Scenario name                                        | Partial<br>days | Full<br>days      | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |
| WRRP – Full implementation                           | 174             | 7                 | 20 %  | \$0.36                          | \$2.50                      | \$1.23                                      | 20                              |  |
| WRRP – Cap at current allocation                     | 205             | 7                 | 37 %  | \$0.32                          | \$2.89                      | \$1.43                                      | 23                              |  |
| Ecological recommendations                           | 139             | 7                 | 16 %  | \$0.36                          | \$2.37                      | \$1.17                                      | 19                              |  |
| Cultural recommendations, with WRRP allocation limit | 199             | 13                | 44 %  | \$0.18                          | \$1.99                      | \$0.98                                      | 16                              |  |

#### Table 14 – North Brook reliability summary

Peak water use (January) was estimated as 100 % of the available water, this is likely to tail off in the months either side of the peak. This means that some flow variability in the non-peak months may exist when users are not taking their full allocation, however this cannot be reliable upon as robust management option.

#### 7.3.2 Catchment-wide approach

As described above, North Brook reaches its minimum flow around 30 days after Cam River/Ruataniwha causing abstraction of Cam River/Ruataniwha flow below the minimum flow. This could be resolved by adopting the North Brook cultural minimum flow, however as Table x shows there is a reasonable economic implication of doing so.

North Brook currently has 279 L/s of allocation, which contributes 27 % to the total Cam River catchment allocation of 1030 L/s

To manage the cumulative effects on Cam River/Ruataniwha it would be prudent to aim for ensuring that the total allocation for the catchment does not exceed the current allocation of the Cam mainstem, that being 700 L/s. Ensuring that the allocation in Cam River is not exceeded would require the North Brook allocation being capped at or near current allocation. Further consideration should be given to the feasibility of managing allocation to the ecological recommendation, although it is recognised that the economic impacts are greater than for other allocation outcomes.

### 7.3.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that the North Brook is insensitive to changes in groundwater recharge caused by PC5 implementation. This aligns with our conceptual understanding of the river which suggests that much of the base flow in the river is sourced from groundwater which is fed by the Ashley River/Rakahuri.

### 7.4 Middle Brook SWAZ

### 7.4.1 Reliability of supply & river flow

There is a strong alignment between current consents and the plan rules and limits. This means that the current consenting scenario should reflect the WRRP scenario. The modelling results do not show days of partial restriction. It is not clear why this is.

Under the *WRRP* – *full implementation* scenario there are 94 days full restrictions per year on average with 42 days of partial restrictions. This has the effect of holding the river at or around the minimum flow for much of the irrigation season if consent holders take their full entitlement.

It should be noted that our understanding of the flow regime in Middle Brook is particularly poor and hence this outcome should be treated with caution.

The *capped at current* scenario is essentially the same as the *WRRP* – *fully implemented* scenario given that the SWAZ is almost fully allocated.

The *Ecological scenario* has a very small allocation and lower minimum flow there appear to provide reliability improvements. This improved reliability would however only be available to a very small number of abstractors.

The cultural recommendation for minimum flow reduces the days of full restriction slightly, due to a slightly lower minimum flow than under the WRRP.

|                                                      | Avera           | ge Rest      | rictions | Regional economic outcomes      |                             |                                             |                                 |  |  |
|------------------------------------------------------|-----------------|--------------|----------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|--|
| Scenario name                                        | Partial<br>days | Full<br>days | % Vol    | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |  |
| WRRP – Full implementation                           | 42              | 94           | 52 %     | \$0.02                          | \$0.27                      | \$0.13                                      | 2                               |  |  |
| WRRP – Cap at current allocation                     | 40              | 94           | 52 %     | \$0.02                          | \$0.26                      | \$0.13                                      | 2                               |  |  |
| Ecological recommendations                           | 21              | 14           | 13 %     | \$0.01                          | \$0.10                      | \$0.05                                      | 1                               |  |  |
| Cultural recommendations, with WRRP allocation limit | 47              | 77           | 46 %     | \$0.03                          | \$0.28                      | \$0.14                                      | 2                               |  |  |

Table 15 – Middle Brook reliability summary

A peak water use estimate is not available for Middle Brook. Anecdotal evidence suggests the single consent on the brook is not currently used.

### 7.4.2 Catchment-wide approach

A catchment-wide approach needs to be considered for the Middle Brook SWAZ, being part of the overall Cam River/Ruataniwha catchment. Taking a catchment-wide approach assesses the effect of management rules in Middle Brook on the Cam River/Ruataniwha itself.

That said, the current allocation on Middle Brook (29 L/s) represents 3 % of the total catchment allocation and therefore any management changes will have minimal effects on the catchment as a whole. Given Middle Brook's very small contribution to the wider catchment we have not considered whether minimum flow need to change here.

To manage the cumulative effects on Cam River/Ruataniwha it would be prudent to aim for ensuring that the total allocation for the catchment does not exceed the current allocation of the Cam mainstem, that being 700 L/s. Capping Middle Brook SWAZ allocation at current levels would support this goal if it were to be pursued.

### 7.4.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that the Middle Brook is insensitive to changes in groundwater recharge caused by PC5 implementation. This aligns with our conceptual understanding of the river which suggests that much of the base flow in the river is sourced from groundwater which is fed in part by the Ashley River/Rakahuri and from land surface recharge in areas which are not intensively irrigated at present.

### 7.5 South Brook SWAZ

### 7.5.1 Reliability of supply & river flow

There is a strong alignment between current consents and the plan rules and limits. This means that the current consenting scenario reflects the WRRP-full implementation scenario.

Under the *WRRP* – *full implementation* scenario there are 10 days full restrictions per year on average with 112 days of partial restrictions. This has the effect of holding the river at or around the minimum flow for much of the irrigation season if consent holders take their full entitlement.

The *capped at current* scenario reduces the number of days partial restriction compared to full implementation, given that the block is currently under-allocated

The *Ecological scenario* has a very small allocation hence partial restrictions would be reduced further.

The cultural recommendation for minimum flow increases the days of full restriction.

|                                                     | Avora           | an root      | riationa | Regional economic outcomes      |                             |                                             |                                 |  |  |
|-----------------------------------------------------|-----------------|--------------|----------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|--|
|                                                     | Avera           | ge resu      | rictions | Regional economic outcomes      |                             |                                             |                                 |  |  |
| Scenario name                                       | Partial<br>days | Full<br>days | % Vol    | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |  |
| WRRP – Full implementation                          | 112             | 10           | 22 %     | \$0.55                          | \$1.81                      | \$0.99                                      | 21                              |  |  |
| WRRP – Cap at current allocation                    | 77              | 10           | 16 %     | \$0.51                          | \$1.54                      | \$0.84                                      | 18                              |  |  |
| Ecological recommendations                          | 30              | 10           | 9 %      | \$0.34                          | \$0.94                      | \$0.51                                      | 11                              |  |  |
| Cultural recommendations with WRRP allocation limit | 134             | 24           | 38 %     | \$0.31                          | \$1.55                      | \$0.84                                      | 18                              |  |  |

### Table 16 – South Brook reliability summary

Peak water use (January) was estimated as 100 % of the available water, this is likely to tail off in the months either side of the peak. This means that some flow variability in the non-peak months may exist when users are not taking their full allocation, however this cannot be relied upon as robust management option.

### 7.5.2 Catchment-wide approach

As described above, South Brook reaches its minimum flow around 30 days after Cam River/Ruataniwha causing abstraction of Cam River/Ruataniwha flow below the minimum flow. This could be resolved by adopting the South Brook cultural minimum flow, however there is a reasonable economic implication of doing so.

South Brook is currently has 81 L/s of allocation, which contributes 8 % to the total Cam River catchment allocation of 1030 L/s

To manage the cumulative effects on Cam River/Ruataniwha it would be prudent to aim for ensuring that the total allocation for the catchment does not exceed the current allocation of the Cam mainstem, that being 700 L/s. Ensuring that the allocation in Cam River is not exceeded would require the South Brook allocation being capped at or near current allocation.

#### 7.5.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that the South Brook is insensitive to changes in groundwater recharge caused by PC5 implementation. This aligns with our conceptual understanding of the river which suggests that much of the base flow in the river is sourced from groundwater which is fed by the Ashley River/Rakahuri and from land surface recharge in areas which are not intensively irrigated at present.

### 7.6 Cust River SWAZ

### 7.6.1 Reliability of supply & river flow

There is a strong alignment between current consents and the plan rules and limits. This means that the current consenting scenario generally reflects the WRRP scenario, albiet with a lower partial restriction trigger which reflects the under-allocated status of the watercourse.

Under the WRRP – full implementation scenario there are 3 days full restrictions per year on average with much of the rest of the season (73 days) on partial restrictions. This has the effect of holding the river at or around the minimum flow for much of the irrigation season if consent holders take their full entitlement.

Because allocation is lower than the current plan limit the days of partial restriction under the Cap at current scenario are lower that the WRRP – full implementation scenario.

The Ecological scenario reduces the number of days partial restriction, but increases the number of days full restriction. This is because the allocation is smaller, but the minimum flow higher.

The Cultural scenario was not modelled as no cultural recommendations were provided for this site in the COMAR.

|                                                      |                 | verag<br>strictio |       | Regional economic outcomes      |                             |                                             |                                 |  |  |
|------------------------------------------------------|-----------------|-------------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|--|
| Scenario name                                        | Partial<br>days | Full<br>days      | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |  |
| WRRP – Full implementation                           | 73              | 3                 | 14 %  | \$0.47                          | \$3.18                      | \$1.57                                      | 25                              |  |  |
| WRRP – Cap at current allocation                     | 122             | 3                 | 24 %  | \$0.58                          | \$4.34                      | \$2.14                                      | 34                              |  |  |
| Ecological recommendations                           | 15              | 27                | 15 %  | \$0.09                          | \$0.59                      | \$0.29                                      | 5                               |  |  |
| Cultural recommendations, with WRRP allocation limit | -               | -                 | -     | -                               | -                           | -                                           | -                               |  |  |

# Table 17 – Cust River reliability summary

Peak water use (January) was estimated as 100 % of the available water, this is likely to tail off in the months either side of the peak. This means that some flow variability in the non-peak months may exist when users are not taking their full allocation, however this cannot be relied upon as robust management option.

### 7.6.2 Catchment-wide approach

A catchment-wide approach needs to be considered for the Cust River SWAZ because, along with Cust Main Drain SWAZ and No.7 Drain SWAZ they form the wider Cust River catchment. Taking a catchment-wide approach assesses the effect management rules in each SWAZ have on the Cust River catchment. This is less important for the Cust River, as in times of low

flow the Cust River is not directly connected to the lower catchment (it does however provide recharge to Cust Main Drain via groundwater).

An analysis of flow records (in particular recession curves) on the Cust River shows that it reaches its minimum flow around 50 days before Cust Main Drain and No.7 Drain. This makes sense given it is a hill-fed catchment when the others are primarily spring-fed.

It is not considered necessary to investigate what would be required to align the minimum flow of the Cust River SWAZ with the rest of the catchment given the disconnection at low flows. This is also the case with allocation, given the Cust River surface water resource is not directly connected to the Cust Main Drain resource.

### 7.6.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that Cust River is sensitive to changes in groundwater recharge caused by PC5 implementation. Our predictions are that low flows could reduce by 36 % from the current level. Under the existing WRRP framework this would see the number of days full restriction increase to 12 days and the volume restriction become 47%. This would suggest that in would be unwise to plan for the Cust River abstraction regime to operate near its current limits as that would leave the environment and abstractors exposed to reducing water availability.



# 7.7 Cust Main Drain SWAZ

### 7.7.1 Reliability of supply & river flow

'Current consents' (not reported here) and WRRP full implementation are effectively the same scenario given the strong alignment between consents and the plan rules and limits. Under this scenario there are 12 days full restrictions per year on average with part of the rest of the season on partial restrictions. This has the effect of holding the river at or around the minimum flow for much of the irrigation season if consent holders take their available water.

Capping allocation at current allocated water makes the partial restriction situation slightly worse, because the catchment is currently over-allocated. Capping at current therefore increases the restriction trigger level.

The ecological scenario results in no change to full days restriction, because the minimum flow does not change. Days partial restriction are significantly reduced, the driver for this being a significantly smaller ecological allocation.

It should be noted that when we naturalise the flow series of Cust Main Drain for groundwater effects (abstractions and recharge from WIL) the baseflow in the stream is reduced by 50 %. Naturalised flows are used to develop minimum flow and allocation estimates for the ecological scenario. Whilst we are uncertain about the scale of this reduction we believe the indication of flow decline it provides is deemed correct as it mirrors conditions pre- and post-WIL.

By analysing Cust Main Drain flow records for the periods before and after WIL commissioning a step increase in flow can be seen following WIL commencing operation and this supports a reduction in flow if the effects of WIL we removed.

The absolute numbers associated with the ecological scenario should be used as recommended environmental flow regime with caution, it is however a very important indicator as to the future availability of water and the risks attached to that water. At a basic level this work suggests that adopting an environment flow regime which operate at the upper boundary of the currently available water resource would expose water users to a high degree of risk.

The cultural recommendation causes a higher number of days on full restriction.

|                                                      |                 | verag<br>strictio |       | Regional economic outcomes      |                             |                                             |                                 |  |
|------------------------------------------------------|-----------------|-------------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|
| Scenario name                                        | Partial<br>days | Full<br>days      | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |
| WRRP – Full implementation                           | 124             | 12                | 30 %  | \$0.95                          | \$7.61                      | \$3.72                                      | 58                              |  |
| WRRP – Cap at current allocation                     | 144             | 12                | 37 %  | \$1.01                          | \$9.08                      | \$4.43                                      | 69                              |  |
| Ecological recommendations                           | 45              | 12                | 86 %  | \$0.17                          | \$1.14                      | \$0.55                                      | 9                               |  |
| Cultural recommendations, with WRRP allocation limit | 119             | 36                | 14 %  | \$0.66                          | \$6.74                      | \$3.29                                      | 51                              |  |

### Table 18 – Cust Main Drain reliability summary

Peak water use (January) was estimated as 79 % of the available water, this is likely to tail off in the months either side of the peak. This means that some flow variability in the non-peak months may exist when users are not taking their full allocation, however this cannot be relied upon as robust management option.

### 7.7.2 Catchment-wide approach

As discussed above there is little to be gained in attempting further alignment of minimum flows between No.7 Drain and Cust Main Drain.

The combined allocation limit for Cust Main Drain and No.7 Drain is 820 L/s. Current allocation exceeds this value on Cust Main Drain alone, and hence consideration should be given to managing allocation jointly between these catchments to achieve outcomes.

#### 7.7.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that Cust Main Drain is sensitive to changes in groundwater recharge caused by PC5 implementation. Our predictions are that low flows could reduce by 14 % from the current level. Under the existing WRRP framework this would see the number of days full restriction increase from 12 days to 185 days and the volume restriction become 85 %. This indicates that there is a potentially significant water resource availability issue on Cust Main Drain and this warrants further investigation to support the validity of long-term management decisions here.

### 7.7.4 No.7 Drain SWAZ

### 7.7.5 Reliability of supply & river flow

There is a reasonable alignment between current consents and the plan rules and limits, although minimum flows vary across the current banding system. This means that the current consenting scenario does not fully y reflect the WRRP scenario.

Under the *WRRP* – *full implementation* scenario there are 182 days partial restrictions per year on average with 18 days full restrictions. This has the potential effect of holding the river at or around the minimum flow for the whole irrigation season if consent holders take their full entitlement.

Because allocation is lower than the current plan limit the days of partial restriction under the *Cap at current* scenario are somewhat lower that *the WRRP – full implementation* scenario but still significant.

The Ecological scenario contains a minimum flow over 100 % higher than current, which causes the majority of the season to be under full restrictions.

The Cultural scenario was the same as *WRRP – fully implemented*.

|                                                      |                 | verag<br>strictio |       | Regional economic outcomes      |                             |                                             |                                 |  |
|------------------------------------------------------|-----------------|-------------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|
| Scenario name                                        | Partial<br>days | Full<br>days      | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |
| WRRP – Full implementation                           | 182             | 18                | 62 %  | \$0.04                          | \$1.03                      | \$0.50                                      | 8                               |  |
| WRRP – Cap at current allocation                     | 155             | 18                | 46 %  | \$0.06                          | \$0.65                      | \$0.32                                      | 5                               |  |
| Ecological recommendations                           | 20              | 175               | 78 %  | -\$0.01                         | \$0.28                      | \$0.14                                      | 2                               |  |
| Cultural recommendations, with WRRP allocation limit | 182             | 18                | 62 %  | \$0.04                          | \$1.03                      | \$0.50                                      | 8                               |  |

### Table 19 – No. 7 Drain reliability summary

An estimate of peak water use was not available.

### 7.7.6 Catchment-wide approach

An analysis of flow records (in particular recession curves) on No. 7 Drain shows that it reaches its minimum flow within 7 days of Cust Main Drain, hence they are already relatively well aligned and this should be maintained where possible. The level of accuracy associated with the analysis/base data does not warrant further fine-tuning of these minimum flows.

The combined allocation limit for Cust Main Drain and No.7 Drain is 820 L/s. Current allocation exceeds this value on Cust Main Drain alone, and hence consideration should be given to managing allocation jointly between these catchments.

# 7.7.7 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that No.7 Drain is insensitive to changes in groundwater recharge caused by PC5 implementation.

### 7.8 Ohoka Stream SWAZ

### 7.8.1 Reliability of supply & river flow

'Current consents' (not reported here) and WRRP full implementation are effectively the same scenario given the strong alignment between consents and the plan rules and limits. There is a small difference in days partial restriction because the block is not full allocated at present.

Under the WRRP scenario there are 0 days full restrictions per year on average with most of the rest of the season on partial restrictions. This has the effect of holding the river at or around the minimum flow for much of the irrigation season.

Capping allocation at current allocated water makes the partial restriction situation slightly better that the WRRP scenario, because it would limit the effects of further abstraction.

The ecological scenario results in significant days of full restriction occurring because of the higher minimum flow; this pattern is reflected in the Cultural scenario albeit to a lesser extent.

|                                                      |                 | verag<br>strictio |       | Regional economic outcomes      |                             |                                             |                                 |  |
|------------------------------------------------------|-----------------|-------------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|--|
| Scenario name                                        | Partial<br>days | Full<br>days      | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |  |
| WRRP – Full implementation                           | 191             | 0                 | 28 %  | \$0.64                          | \$4.29                      | \$2.11                                      | 36                              |  |
| WRRP – Cap at current allocation                     | 185             | 0                 | 24 %  | \$0.63                          | \$4.05                      | \$2.00                                      | 34                              |  |
| Ecological recommendations                           | 98              | 58                | 30 %  | \$0.24                          | \$1.67                      | \$0.82                                      | 14                              |  |
| Cultural recommendations, with WRRP allocation limit | 171             | 33                | 46 %  | \$0.39                          | \$3.62                      | \$1.78                                      | 30                              |  |

### Table 20 – Ohoka Stream reliability summary

Peak water use (January) was estimated as 57 % of the available water, this is likely to tail off in the months either side of the peak. This means that some flow variability in the non-peak months may exist when users are not taking their full allocation, however this cannot be relied upon as robust management option.

### 7.8.2 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that Ohoka Stream is insensitive to changes in groundwater recharge caused by PC5 implementation.

# 7.9 Kaiapoi River SWAZ

### 7.9.1 Reliability of supply & river flow

'Current consents' (not reported here) and WRRP full implementation are effectively the same scenario given the strong alignment between consents and the plan rules and limits. There is a 50% difference in days partial restriction because the block is not full allocated at present (approximately 50 % allocated). Under the WRRP scenario there are 0 days full restrictions per year on average with 55 days on partial restrictions.

Capping allocation at current allocated water makes the partial restriction situation better (21 days) than the WRRP scenario, because it would limit the effects of further abstraction.

The ecological scenario results in significant days of full restriction occurring because of the higher minimum flow; this pattern is reflected in the Cultural scenario albeit to a much greater extent in the number of days partial restrictions occur. This is because the higher minimum flow pushes up the restriction trigger.

| Scenario name                                       | Average restrictions |              |       | Regional economic outcomes      |                             |                                             |                                 |
|-----------------------------------------------------|----------------------|--------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|
|                                                     | Partial<br>days      | Full<br>days | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |
| WRRP – Full implementation                          | 55                   | 0            | 6 %   | \$2.39                          | \$16.25                     | \$7.87                                      | 117                             |
| WRRP – Cap at current allocation                    | 21                   | 0            | 2 %   | \$1.27                          | \$8.18                      | \$3.96                                      | 59                              |
| Ecological recommendations                          | 34                   | 27           | 11 %  | \$1.00                          | \$7.33                      | \$3.55                                      | 53                              |
| Cultural recommendations with WRRP allocation limit | 139                  | 30           | 23 %  | \$1.38                          | \$13.06                     | \$6.32                                      | 94                              |

### Table 21 – Kaiapoi River reliability summary

Peak water use (January) was estimated as 80 % of the available water, this is likely to tail off in the months either side of the peak. This means that some flow variability in the non-peak months may exist when users are not taking their full allocation, however this cannot be relied upon as robust management option.

### 7.9.2 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that Kaiapoi River is insensitive to changes in groundwater recharge caused by PC5 implementation.

# 7.10 Courtenay Stream SWAZ

### 7.10.1 Reliability of supply & river flow

There is a strong alignment between current consents and the plan rules and limits. This means that the current consenting scenario should reflect the WRRP scenario. The Current consenting modelling results do not show days of partial restriction. It is not clear why this is.

Under the WRRP-full implementation scenario there are 0 days full restrictions per year on average.

Capping allocation at current allocated water keeps full days restriction at 0 days.

The ecological scenario results in a change to restrictions. 15 days full restriction are created and the volume restriction is doubled. The cultural scenario increases restrictions further.

| Scenario name                                       | Average<br>restrictions |              |       | Regional economic outcomes      |                             |                                             |                                 |
|-----------------------------------------------------|-------------------------|--------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|
|                                                     | Partial<br>days         | Full<br>days | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |
| WRRP – Full implementation                          | 64                      | 0            | 9 %   | \$0.32                          | \$2.08                      | \$1.01                                      | 15                              |
| WRRP – Cap at current allocation                    | 60                      | 0            | 8 %   | \$0.31                          | \$2.00                      | \$0.97                                      | 15                              |
| Ecological recommendations                          | 73                      | 15           | 22 %  | \$0.20                          | \$1.45                      | \$0.70                                      | 11                              |
| Cultural recommendations with WRRP allocation limit | 73                      | 64           | 43%   | \$0.14                          | \$1.55                      | \$0.75                                      | 11                              |

 Table 22 – Courtenay Stream reliability summary

An estimate of peak water use was not available.

### 7.10.2 Catchment-wide approach

A catchment-wide approach needs to be considered for Courtenay Stream SWAZ because, along with Greigs Drain SWAZ, they form the wider Courtenay Stream catchment. Taking a catchment-wide approach assesses the effect management rules in each SWAZ have on the Courtenay Stream itself.

An analysis of flow records (in particular recession curves) on Courtenay Stream could not identify any minimum flow offset with Greigs Drain because neither site reaches its minimum flow. Using the ecological minimum flows instead it is evident that Courtenay Stream reaches its that minimum flow 10-14 days before Greigs Drain. This means that under the ecological minimum flow regime Courtenay Stream would be degraded by abstractions on Greigs Drain

despite the minimum flow being reached. This would not occur under the current minimum flow arrangement.

The combined allocation limit for Courtenay Stream and Greigs Drain is 210 L/s. Current combined allocation is 180 L/s. If allocation was capped at this figure then Courtenay Stream would be 30 % over-allocated, the limit being 140 L/s. Consideration should be given to managing allocation jointly between these catchments.

### 7.10.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that Courtenay Stream is insensitive to changes in groundwater recharge caused by PC5 implementation.

# 7.11 Greigs Drain SWAZ

### 7.11.1 Reliability of supply & river flow

'Current consents' (not reported here) and WRRP full implementation are effectively the same scenario given the strong alignment between consents and the plan rules and limits. No days of full restriction occur under either scenario.

Capping allocation at current allocated water keeps full days restriction at 0 days.

The ecological scenario results in a small change to restrictions. 3 days full restriction are created and the volume restriction increases to 12 %. The cultural scenario is very similar.

|                                                     | Average restrictions |              |       | Regional economic outcomes      |                             |                                             |                                 |
|-----------------------------------------------------|----------------------|--------------|-------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------|
| Scenario name                                       | Partial<br>days      | Full<br>days | % Vol | Operating<br>profit<br>(\$M/yr) | Regional<br>GDP<br>(\$M/yr) | Regional<br>Household<br>Income<br>(\$M/yr) | Regional<br>Employment<br>(FTE) |
| WRRP – Full implementation                          | 1                    | 0            | 0 %   | \$0.17                          | \$0.98                      | \$0.48                                      | 7                               |
| WRRP – Cap at current allocation                    | 0                    | 0            | 0 %   | \$0.11                          | \$0.64                      | \$0.31                                      | 5                               |
| Ecological recommendations                          | 53                   | 3            | 12 %  | \$0.17                          | \$1.08                      | \$0.53                                      | 8                               |
| Cultural recommendations with WRRP allocation limit | 43                   | 3            | 10 %  | \$0.15                          | \$0.92                      | \$0.45                                      | 7                               |

Table 23 – Greigs Drain reliability summary

An estimate of peak water use was not available.

### 7.11.2 Catchment-wide approach

A catchment-wide approach needs to be considered for Greigs Drain SWAZ because, along with Courtenay Stream SWAZ, they form the wider Courtenay Stream catchment. Taking a catchment-wide approach assesses the effect of management rules in each SWAZ have on the Courtenay Stream itself.

An analysis of flow records (in particular recession curves) on Courtenay Stream could not identify any minimum flow offset with Greigs Drain because neither site reaches its minimum flow. Using the ecological minimum flows instead it is evident that Courtenay Stream reaches its minimum flow 10-14 days before Greigs Drain. This means that under the ecological minimum flow regime Courtenay Stream would be degraded by abstractions on Greigs Drain despite the minimum flow being reached. This would not occur under the current minimum flow arrangement.

The minimum flow in Greigs Drain would need to be increased to 250 L/s to align the catchments flow management regimes.

The combined allocation limit for Courtenay Stream and Greigs Drain is 210 L/s. Current combined allocation is 180 L/s. If allocation was capped at this figure then Courtenay Stream

would be 30 % over-allocated. Consideration should be given to managing allocation jointly between these catchments.

## 7.11.3 Effects of changing water resource

The assessment of effects on river flow as a result of full use of the full groundwater allocation, showed that Courtenay Stream is insensitive to changes in groundwater recharge caused by PC5 implementation.

#### 7.12 Current gaps

The current SWAZ layout in the WRRP (Figure 2) does not include the entire WWZ. Current and potential water users in the areas not covered by SWAZ are therefore exposed to uncertainty regarding the available water.

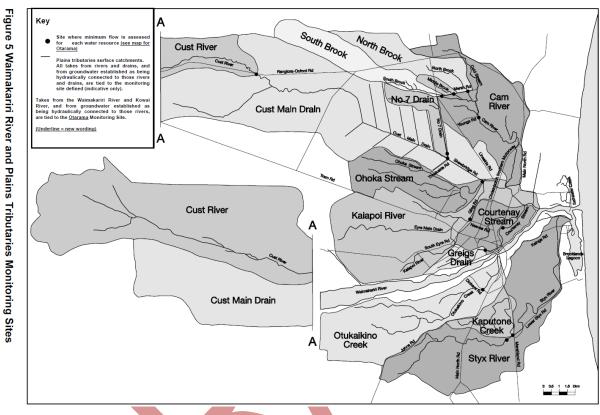



Figure 2 – WRRP SWAZ map

Provided below is a summary of the water management options available to provide certainty in the current non-SWAZ areas. This is based on creating a number of new SWAZ to ensure no gaps exist.

## 7.12.1 Upper Eyre River SWAZ

The Upper Eyre River SWAZ covers the hill-catchment of the Eyre River and the upper extents of the plains west of the Waimakariri Irrigation Limited main race. This catchment is dominated by low baseflows, interspersed with flood flows from the hillslopes of Mt Oxford. Currently a maximum of 83 L/s is allocated in the A block and 6.5 L/s is allocated to the B block.

The 'A' block comprises two consents held by Waimakariri District Council for community supply purposes. CRC990931.1 is one of the A permits and had a maximum rate which varies by month, and has different rates if the other A permit (CRC166592) is also being used. Permits granted for community water supply do not need to respond to minimum flow requirements in the same way as irrigation takes, never the less minimum flows for such takes can be a useful indication for when water saving initiatives are required to conserve water. The A permits currently have no minimum flow conditions.

A single 'B' permit is granted, this is for private irrigation purposes and has a minimum flow site where Island Road crosses Mounseys Stream.

Establishing a minimum flow sites which covers all of the current and potential future abstraction points will be problematic here, given the diversity of tributaries from which takes occur.

### 7.12.2 Eyre River SWAZ

The Eyre River SWAZ forms a large part of the Zone, yet currently there in not a SWAZ which covers the area and no allocation limits are set. 1037 L/s of surface water is allocated in this area.

The surface hydrology of the area is dominated by a large water race network which dissects the natural flow patterns into small units. Given the highly permeable nature of the gravels in this area it is unlikely that any substantial perennial surface features existed. The only significant stream in the area is the Eyre River itself which goes dry around Oxford and rarely holds a continuous flow. All of the water allocated is deemed to be stream-depleting, despite the fact there are few, if any, perennial streams to deplete.

Minimum flow restrictions are not frequently applied given the lack of perennial stream on which to base such a restriction. Some consents have a level based restriction system, relating to a monitoring well.

There is insufficient data available to assess flows within surface features and the reliability of supply from them. Given that little minimum flow or partial restrictions current apply to takes it can be assumed that reliability of supply is not an issue for the takes present, unless groundwater levels fall below pump intake levels. Reliability will be further complicated given many users in this area will also have supply arrangements with Waimakariri Irrigation Limited for Waimakariri River water.

## 7.12.3 Coastal Streams SWAZ

This SWAZ covers a discrete area bounded to the north by the catchment watershed (just south of Tūtaepatu Lagoon), to the south by the Waimakariri River, to the west by Kaiapoi, SH1 and Woodend and to the east by the coast.

Kairaki Creek and Macintosh Drain are the named streams in this area. They flow from north to south and both enter the Waimakariri River directly, either side of Kaiapoi Waste Water Treatment Plant.

There is currently 31 L/s of water consented to be taken from this area. All water currently consented is via stream-depleting groundwater takes.

The current consents do not contain minimum flow conditions, and currently there is no minimum flow site which can be used to manage water in this area. These streams sit within an inter-dune area which is different from areas already covered by minimum flow sites. Therefore if these streams were to be managed by way of minimum flow a new site would need to be established. This will be problematic given the slack water present and extensive weed growth.

There is insufficient data available to assess flows within these streams and the reliability of supply from them. Given that no minimum flow or partial restrictions current apply to takes it can be assumed that reliability of supply is not an issue for the small takes present.

# 8 Management options

The outcome of this memorandum is the presentation below of options for the management of the Northern Waimakariri tributaries.

| SWAZ       | Issue                                                                                                                                                                                                                                   | Options                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SD30 - 150 | Inconsistency with<br>regional rules                                                                                                                                                                                                    | <ul> <li>Retain WRRP stream depletion rules (30 day)</li> <li>Move to WRRP stream depletion rules (150 day)</li> </ul>                                                                  |
| SWAZ       | Incorrect boundaries.<br>Areas not covered by<br>SWAZ                                                                                                                                                                                   | <ul> <li>Retain WRRP SWAZ boundaries</li> <li>Move to revised boundaries</li> <li>Infill areas currently without SWAZ</li> </ul>                                                        |
| B Blocks   | Very poor reliability<br>for B block in spring-<br>fed streams<br>Risk of reducing<br>reliability for existing<br>users if further permits<br>are granted<br>Potentially significant<br>impacts on flow regime<br>in spring-fed streams | <ul> <li>Retain 'B' blocks on spring-fed streams</li> <li>Remove 'B' blocks on spring-fed streams</li> <li>Cap existing 'B' blocks at current allocation (and/or + headroom)</li> </ul> |

| SWAZ                     | Issue                                                                                                   | Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cam River/<br>Ruataniwha | Water abstraction,<br>along with other<br>pressures, is impacting<br>upon the values of the<br>waterway | <ul> <li>Minimum flow is left at WRRP flow of 1,000 L/s</li> <li>Minimum flow is changed to ecological recommendation of 890 L/s</li> <li>Minimum flow is changed to ecological recommendation of 1,200 L/s</li> <li>Minimum Flow is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> <li>Allocation limit is capped at current allocation (155 L/s)</li> <li>Allocation limit is left at the WRRP limit (700 L/s)</li> <li>Allocation limit changed to the ecological recommendation (311 L/s)</li> <li>Allocation limit is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> </ul> |
| Northbrook               | Water abstraction,<br>along with other<br>pressures, is impacting<br>upon the values of the<br>waterway | <ul> <li>Minimum flow is left at WRRP flow of 530 L/s (This is also the ecological recommendation)</li> <li>Minimum flow is changed to ecological recommendation of 590 L/s</li> <li>Minimum flow is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> <li>Allocation limit is capped at current allocation (269 L/s)</li> <li>Allocation limit is left at the WRRP limit (200 L/s)</li> <li>Allocation limit changed to the ecological recommendation (183 L/s)</li> <li>Allocation limit is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> </ul>                                 |
| Middlebrook              | Water abstraction, along with other                                                                     | Minimum flow is left at WRRP flow of 60 L/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| SWAZ               | Issue                                                                                                                                                                                                                                                                                    | Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | pressures, is impacting<br>upon the values of the<br>waterway. Leaving a<br>large allocation<br>available on such a<br>small waterbody risks a<br>water take regime with<br>significant effects on<br>the ecology of the<br>waterway and which<br>cannot support reliable<br>irrigation. | <ul> <li>Minimum flow is changed to ecological recommendation of 25 L/s</li> <li>Minimum flow is changed to ecological recommendation of 50 L/s</li> <li>Minimum Flow is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> <li>Allocation limit is capped at current allocation (29 L/s)</li> <li>Allocation limit is left at the WRRP limit (30 L/s)</li> <li>Allocation limit changed to the ecological recommendation (8 L/s)</li> <li>Allocation limit is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> </ul>                             |
| Southbrook         | Water abstraction,<br>along with other<br>pressures, is impacting<br>upon the values of the<br>waterway                                                                                                                                                                                  | <ul> <li>Minimum flow is left at WRRP flow of 140 L/s (This is also the ecological recommendation)</li> <li>Minimum flow is changed to cultural recommendation of 170 L/s</li> <li>Minimum Flow is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> <li>Allocation limit is capped at current allocation (100 L/s)</li> <li>Allocation limit is left at the WRRP limit (81 L/s)</li> <li>Allocation limit changed to the ecological recommendation (47 L/s)</li> <li>Allocation limit is set in the context of the wider Cam River catchment (Cam + 3 Brooks)</li> </ul> |
| Cust River         |                                                                                                                                                                                                                                                                                          | <ul> <li>Minimum flow is left at WRRP flow of 20 L/s</li> <li>Minimum flow is changed to ecological &amp; cultural recommendation of 150 L/s</li> <li>Minimum Flow is set in the context of the wider Cust River catchment (Cust, CMD, No.7)</li> <li>Allocation limit is capped at current allocation (427 L/s)</li> <li>Allocation limit is left at the WRRP limit (290 L/s)</li> <li>Allocation limit changed to the ecological recommendation (54 L/s)</li> <li>Allocation limit is set in the context of the wider Cust River catchment (Cust + CMD, No.7)</li> </ul>                        |
| Cust Main<br>Drain |                                                                                                                                                                                                                                                                                          | <ul> <li>Minimum flow is left at WRRP flow of 230 L/s</li> <li>Minimum flow is changed to ecological recommendation of 270 L/s</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| SWAZ          | Issue | Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |       | <ul> <li>Minimum flow is changed to cultural recommendation of 400 L/s</li> <li>Minimum Flow is set in the context of the wider Cust River catchment (Cust, CMD, No.7)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |       | <ul> <li>Allocation limit is capped at current allocation (876 L/s)</li> <li>Allocation limit is left at the WRRP limit (690 L/s)</li> <li>Allocation limit changed to the ecological recommendation (90 L/s)</li> <li>Allocation limit is set in the context of the wider Cust River catchment (Cust, CMD, No.7)</li> </ul>                                                                                                                                                                                                                                                                         |
| No.7 Drain    |       | <ul> <li>Minimum flow is left at WRRP flow of 60 L/s (This is also the cultural recommendation)</li> <li>Minimum flow is changed to ecological recommendation of 130 L/s</li> <li>Minimum Flow is set in the context of the wider Cust River catchment (Cust, CMD, No.7)</li> <li>Allocation limit is capped at current allocation (69 L/s)</li> <li>Allocation limit is left at the WRRP limit (130 L/s)</li> <li>Allocation limit changed to the ecological recommendation (44 L/s)</li> <li>Allocation limit is set in the context of the wider Cust River catchment (Cust, CMD, No.7)</li> </ul> |
| Ohoka Stream  |       | <ul> <li>Minimum flow is left at WRRP flow of 300 L/s</li> <li>Minimum flow is changed to ecological recommendation of 470 L/s</li> <li>Minimum flow is changed to cultural recommendation of 420 L/s</li> <li>Allocation limit is capped at current allocation (458 L/s)</li> <li>Allocation limit is left at the WRRP limit (500 L/s)</li> <li>Allocation limit changed to the ecological recommendation (199 L/s)</li> </ul>                                                                                                                                                                      |
| Kaiapoi River |       | <ul> <li>Minimum flow is left at WRRP flow of 600 L/s</li> <li>Minimum flow is changed to ecological recommendation of 1150 L/s</li> <li>Minimum flow is changed to cultural recommendation of 1200 L/s</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   |

| SWAZ                | Issue                   | Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                         | <ul> <li>Allocation limit is capped at current allocation (449 L/s)</li> <li>Allocation limit is left at the WRRP limit (1000 L/s)</li> <li>Allocation limit changed to the ecological recommendation (479 L/s)</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
| Courtenay<br>Stream |                         | <ul> <li>Minimum flow is left at WRRP flow of 260 L/s</li> <li>Minimum flow is changed to ecological recommendation of 330 L/s</li> <li>Minimum flow is changed to cultural recommendation of 400 L/s</li> <li>Minimum flow set in the context of the wider Courtenay Stream catchment (Courtenay + Greigs)</li> <li>Allocation limit is capped at current allocation (134 L/s)</li> <li>Allocation limit changed to the ecological recommendation (108 L/s)</li> <li>Allocation limit set in the context of the wider Courtenay Stream catchment (Courtenay + Greigs)</li> </ul> |
| Greigs Drain        |                         | <ul> <li>Minimum flow is left at WRRP flow of 150 L/s</li> <li>Minimum flow is changed to ecological / cultural recommendation of 230 L/s</li> <li>Minimum flow set in the context of the wider Courtenay Stream catchment (Courtenay + Greigs)</li> <li>Allocation limit is capped at current allocation (24 L/s)</li> <li>Allocation limit is left at the WRRP limit (70 L/s)</li> <li>Allocation limit changed to the ecological recommendation (83 L/s)</li> <li>Allocation limit set in the context of the wider Courtenay Stream catchment (Courtenay + Greigs)</li> </ul>  |
| Upper Eyre<br>River | No limits currently set | <ul> <li>Minimum flow is assigned on consent by consent basis.</li> <li>WRRP minimum flow site is established</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| SWAZ               | Issue                   | Options                                                                                                                                                                                                                                                                                                                                      |
|--------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                         | <ul> <li>Minimum flow set using default LWRP rule</li> <li>A and B allocation limits are capped at current</li> <li>A and B allocation limits are capped at current + headroom (size tbc)</li> </ul>                                                                                                                                         |
| Eyre River         | No limits currently set | <ul> <li>All takes in area assigned to GAZ. SWAZ allocation limit set to 0 L/s</li> <li>Any consents deemed to stream deplete streams outside the Eyre River SWAZ assigned to that stream under its limits and minimum flows.</li> <li>Set SWAZ allocation limit using cap at current approach</li> <li>Set Minimum Flow to 0 L/s</li> </ul> |
| Coastal<br>Streams | No limits currently set | <ul> <li>All takes in area assigned to GAZ. SWAZ allocation limit set to 0 L/s</li> <li>Any consents deemed to stream deplete streams outside the Eyre River SWAZ assigned to that stream under its limits and minimum flows.</li> <li>Set SWAZ allocation limit using cap at current approach</li> <li>Set Minimum Flow to 0 L/s</li> </ul> |

#### 8.1 Additional management strategies

The over-allocation issues evident in these catchments mean that a large degree of effort will be required to manage abstractions back to the current allocation limits. Reduction of allocation limits further, towards the ecological recommendations for instance, will require extensive mitigation work to be undertaken, most likely resulting in the need for consents to be surrendered.

Provided below is a list of alternative strategies for recovering the over-allocation and taking smaller reductions in the allocated water should this de deemed appropriate.

An alternative management strategy is to accept an environmental flow and allocation regime which does not itself meet all of the values being sought and back this up with physical mitigation techniques which increase the efficacy of the environmental flow and allocation regime. Example of these techniques are also provided.

| Mitigation                                                | Justification                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Revised stream depletion assessment                       | Stream depletion estimates used in the development of allocation limits is conservative. Site specific assessments, or use of another accepted methodology, could reduce the paper over-allocation                                                                                                |
| Consider municipal supplies differently                   | Some allocation blocks (Taranaki, Saltwater, Ashely River) include<br>municipal supply water. This water is not subject to minimum flow<br>restrictions in the same way as irrigation consents. Additionally some<br>municipal takes as back-ups only and so are not used on a regular basis.     |
| Voluntary surrender                                       | If low use/no use consents which contribute to over-allocation we surrendered this would take catchments closer to the agreed allocation limits                                                                                                                                                   |
| % reductions of water<br>use at consent<br>renewal/review | When consents are renewed/reviewed the actual water use can be<br>examined and the consented amount can be reduced should it be found<br>water is not being used. Under a falling lid situation this water would stay<br>in the river and not be reallocated.                                     |
| Switch to deep groundwater                                | Deep groundwater could provide an alternative source of supply for some<br>users thereby reducing the water allocated/used in catchment, leaving<br>more in the waterways                                                                                                                         |
| Restrict transfers                                        | Restricting transfer of water between properties can result in less water being used, and ultimately consents being surrendered. If transfers are deemed appropriate then it is also possible to require that a % of any transferred water be returned to the river and not reallocated.          |
| Offset mitigation                                         | Planting for shading and habitat purposes, and installation of riffles can<br>improve the outcomes of environmental flow and allocation regimes. This<br>can reduce water temperature and increase dissolved oxygen levels which<br>can reduce the overall ecological stress of low water levels. |

#### 9 References

- Harris (2018) Waimakariri Land and water solutions programme: Economic assessment of the impacts of changes in flow and N management in the Northern Waimakariri Tributaries
- Land and Water Regional Plan
- National Policy Statement for Freshwater Management 2014, Updated August 2017 to incorporate amendments from the National Policy Statement for Freshwater Amendment Order 2017
- Waimakariri River Regional Plan




# Appendix A | SWAZ maps



Appendix 1 maps:

- Overview
- Cam River / Ruataniwha
- North Brook
- Middle Brook
- South Brook
- Cust River
- Cust Main Drain
- No. 7 Drain
- Ohoka Stream
- Silverstream
- Courtenay Stream
- Greigs Drain
- Upper Eyre River
- Eyre River
- Upper Ohoka Stream
- Coastal Streams





